
  

  

Abstract— Visual servo control of end-effectors is a crucial 

step in robot micromanipulation. In the three-dimensional 

positioning problem of end-effector, while methods have been 

developed for visually detecting the x-axis and y-axis positions 

of the end-effector tip, it remains challenging to obtain visual 

feedback of the z-axis positions. In this paper, a new strategy is 

proposed to estimate the z-axis position of the end-effector. 

Instead of using depth-from-focus and depth-from-defocus 

methods, we transform z-axis positioning problem into a 

multiclass classification problem. Our strategy takes a 

monocular image of the end-effector as input, classifies it into 

different depth intervals, and outputs the focal plane z-axis 

position for that interval. A deep learning model is developed to 

solve the multiclass classification problem. Considering of the 

shallow depth of field of an optical microscope, a novel loss 

function is proposed to penalize misclassification. Using glass 

micropipettes as an example, the deep learning model achieves 

an accuracy of 96.1% for depth prediction/classification. The 

proposed strategy provides a new method for locating the out-

of-focus depth of the end-effector and for providing 3D visual 

feedback for robotic micromanipulation. 

 
Keywords: End-effector manipulation, Automation at micro-

scale, Robot Vision 

I. INTRODUCTION 

The past decades have witnessed significant development 
of robotic micromanipulation techniques. Under the visual 
guidance of an optical microscope, an end-effector is 
automatically controlled for the assembly of microparts, 
material characterization, and manipulation of biological 
cells [1]. In robotic micromanipulation, obtaining the visual 
feedback of end-effector position is an essential step in visual 
servo control. The positioning of the end-effector is 
performed in three-dimensional space, thus requiring the 
robot system to have three-dimensional (x-y-z) perception of 
the location of the end-effector.  

Within the focal plane (x-y plane), the object being 
imaged (i.e., end-effector) is clearly visible, and the visual 
detection algorithms for its position have been relatively 
mature, such as the recognition algorithm based on template 
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matching [2], active contour [3], and feature points [4]. 
Outside the focal plane, the end-effector is blurred and it is 
difficult to obtain the depth information in z-direction (Fig. 1). 
On the macroscopic domain, depth information in robotic 
manipulation can be obtained by different imaging modalities, 
such as binocular stereo vision depth estimation [5], 
structured light-based 3D depth information estimation [6][7], 
holographic imaging [8][9], etc. Among them, binocular 
vision has also been introduced to microscopic operations, 
such as adding a side-view microscope to the conventional 
top-view microscope to provide direct visual feedback in the 
z-direction [10][11]; however, the implementation of such 
methods all require the support of additional hardware. In 
applications of robotic micromanipulation such as in clinical 
assisted reproductive treatment, manipulation of cells is 
usually performed under a conventional monocular optical 
microscope, which does not support hardware expansion. 

In monocular microscopic vision, z-direction position 
estimation algorithms are usually divided into two categories: 
depth from focus and depth from defocus. The technical 
nature of depth of focus is auto-focusing, i.e., first focusing 
on the object by trial-and-error and up-and-down adjustment 
of the focal plane, and then inferring the 3D position of the 
object based on the z position of the current focal plane 
[12][13]; however, this method requires repeated trial-and-
error adjustment of the focal plane until it is focused on the 
end-effector, limiting the speed of such methods. Depth from 
defocus estimates the out-of-focus depth of an object by 
establishing an out-of-focus model of the object being 
imaged, such as a look-up table between the out-of-focus 
distance of the object and the out-of-focus image feature 
(such as object area) [14][15]. Depth of defocus does not 
require adjusting the focal plane to focus on the object, thus 
avoiding the problem of reduced efficiency due to repeated 
trial-and-error searching for the focus position. However, the 
accuracy of depth of defocus relies heavily on the accurate 
establishment and calibration of the off-focus model. End-
effectors have various geometry of its projection on the focal 
plane, making it challenging to accurately establish and 
calibrate such off-focus models. 

Different from existing depth-from-focus methods and 
depth-from-defocus methods, this paper utilizes the 
characteristics of microscope depth of field and transforms 
the continuous depth estimation problem into a depth 
classification problem. The multi-class depth classification 
problem is then solved by machine learning, which takes a 
single end-effector image as input and predicts/classifies its 
corresponding depth of the originating imaging plane. Using 
glass micropipettes as an example, the developed machine 
learning model achieved a prediction accuracy of 96.1%. 
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II.  METHOD 

A. System overview 

The robotic micromanipulation system consists of a 
standard inverted microscope (Eclipse Ti2, Nikon), a CMOS 
camera (Basler MED ace 23 MP 164 color, Balser) and a 
motorized micromanipulator (Sutter MP-285, Sutter) (Fig.2). 
The end-effector is a glass micropipette used for cell injection 
in clinical infertility treatment, which is controlled by the 
sutter micromanipulator to move the z-axis and adjust the 
out-of-focus distance after finding the in-focus plane. The 
micropipette image with different out-of-focus distances was 
taken with under a 4x objective. 

 

B. The Depth Prediction of Micropipette under Microscope 

The traditional methods cannot meet the demand of 

dynamic depth prediction of the micropipette under 

microscope in terms of both speed and accuracy, so a new 

method for estimating the out-of-focus depth of pipette is 

proposed in this paper. 

The depth of field of an optical microscope is limited, and 

objects within the depth of field are simultaneously in focus. 

Hence, the continuous out-of-focus depth can be 

approximated by dividing it into multiple intervals, and the 

observed micropipette images in each interval show an 

approximate state of the focal plane with the same degree of 
out-of-focus as that interval. This could naturally transform 

the depth estimation problem into a classification problem: 

to which interval (originating imaging focal plane) does the 

micropipette image belong to. Therefore, the continuous 

depth prediction problem of the pipette under the 

microscope is transformed into a classification problem: 

classify the pipette image to different focal plane intervals, 

input an image, predict which focal plane interval it is in and 

output its Z-axis position (focal plane). Then, the multi-class 

classification problem can be solved by using machine 

learning methods. In this paper, a classification method 

based on ResNet-34 is proposed and compared with other 

machine learning algorithms and existing traditional 

methods based on focus measure. 

To train the depth classification model, a dataset consists 

of 900 images (100 z-stacks and each z-stack containing 9 

images) of micropipette was collected. The depth of field of 

the 4x objective (numerical aperture: 0.13) used in this paper 
is 55.5 μm, then the range of sharpness variation of the 

observed objects is small [Fig.3(a)] and the image 

information changes less in the range of 27.75 μm above and 

below the focus point. Therefore, we divided the continuous 

depth information and acquired images every 30 μm with the 

in-focus position of the pipette as the origin, and the image 

out-of-focus degree changed significantly. Pipette images 

acquired at -120 μm are classified as class 1, while images 

acquired at +120 μm are classified as class 9. The size of 

each image is 798 × 798 pixels for each image. To enable 

the algorithm to fully learn the depth information of the 
images, we rotate the pipette to acquire images from 

multiple angles (Fig. 3(b)). 

 

C. Loss function design with penalty coefficients 

The cross-entropy loss function is typically applied to 

multiclassification problems, and its expression is 

 

𝐶𝐸𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ 𝐿𝑜𝑔(𝑃𝑛 ,  𝑖)

𝑁

𝑛=1
 (1) 

 

In order to improve the classification accuracy of the 

model, we add penalty coefficients to the cross-entropy loss 

function. The images in the pipette dataset collected based 

on depth gradient are strongly correlated, and there is a 
correspondence between the difference in depth gradient and 

the difference in category. The larger the category difference 

is, the larger the depth gradient difference is. In order to 

improve the classification accuracy of the model for similar 

 

Figure 3．(a) Schematic diagram of the depth of field of the 

objective lens. (b) Pipette images of multiple angles in the dataset. 

 

Figure 2．(a) Setup of the robotic micromanipulation system. (b) The 

top view of the set up. (c) Micropipette imaging at 4× magnification 

 

Figure 1．Images of the same pipette at different z-positions, marked on top of corresponding images. 

 



  

depth images, we increase the loss for the case of wrong 

prediction, which makes the algorithm pay more attention to 

it. The new loss function is designed as 

W𝐿𝑜𝑠𝑠 = −
1

𝑁
∑ 𝑊𝑛𝐿𝑜𝑔(𝑃𝑛 ,  𝑖)

𝑁

𝑛=1
 (2) 

 

𝑊𝑛 = |𝐿𝑖
2 − 𝐿𝑛

2| + 1 (3) 

 

where 𝐿𝑖 is the ground truth, 𝐿𝑛 is the predicted label value, 

and 𝑃𝑛 is the predicted probability of SoftMax output. 

III. RESULT AND DISCUSSION 

A. Performance of the depth prediction model 

The depth prediction model was evaluated by its 

prediction accuracy, model size, training time and inference 

time. As summarized in Table 1, the model performance was 

compared with that of conventional deep learning models, 

including VGG, GoogLeNet, ResNet-50, and ResNet-101. 

The highest accuracy is ResNet34 with WLoss with 96.1%, 
followed by ResNet34 with 80.2%. The fastest FPS is 

AlexNet with 42 images per second, and the smallest model 

size is 41.4 M which is GoogLeNet. Typically, a frame rate 

not lower than 30 FPS is regarded as real-time for potential 

robotic micromanipulation tasks [13]. Considering the trade-

off between accuracy and inference time, ResNet-34 with 

WLoss was finally chosen as the depth prediction model.  

 
By adding penalty coefficients to the cross-entropy loss 

function, the algorithm's loss in case of misclassification is 

increased to improve the model's focus on error cases, and 

the parameters are dynamically updated by backward 

propagation to adjust the model's weights and biases. When 

the gap between the predicted class and the ground truth is 

larger, the penalty coefficient is larger, making the 

misclassification interval of the model smaller. Compared 
with the model trained using cross entropy as the loss 

function, the accuracy is improved by 15.9%, the precision 

is improved by 16.08%, the recall is improved from 80.30% 

to 96.29%, and the F1-score is improved by 16.17% 

(Table.2). Overall, using WLoss (Eq. 2) improved the model 

performance. 

 

 

B. Comparison of depth estimation using the prediction 

model versus conventional focus measure methods 

Further we compared the improved ResNet-34 algorithm 

with the traditional methods. The traditional methods use 

different focus measure for in-focus image selection, we 

selected four more representative methods as baseline to 

compare with the machine learning based methods:  

1. Variance-based method. The variance function is 

used to represent the dispersion degree of the image 

grayscale distribution. In-focus images have a large 

range of grayscale value changes, a high degree of 

dispersion, and a large variance.  

 

 

Figure 5 . The confusion-matrix, of Zpositions predicted by the 

classification model on the same z-stacks of pipette images. The color 

bar shows the color coding of classification probability. 
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Figure 4 . Performance of in-focus image selection and the actual 

pipette image corresponding to the Z-axis. The black dot indicates the 

position of the focus, and the arrow indicates the trend of the 

movement of the focus. 

TABLE 1. PERFORMANCE OF Z-POSITION PREDICTED BY DIFFERENT DNN-
BASED MODELS. 

Model Accuracy 
Model 

Size 

Training 

Time 
FPS 

ResNet-34 80.20% 85.3 M 2999 31 

ResNet-50 78.90% 94.4 M 3927 32 

ResNet-101 76.60% 170.7 M 5962 27 

GoogLeNet 75.30% 41.4M 3429 32 

AlexNet 61.70% 58.4M 2241 42 

ResNet-34+WLoss  96.10% 85.3 M 2999 30 

 

 

 

 



  

 

2. Method based on two-dimensional discrete Fourier 

transform. the distance from the pixel in the Image to 

the center pixel is used as the high-frequency 

component in the emphasis spectrum, and the more 

high-frequency components, the clearer the focus of 

the image.  

3. Method based on autocorrelation function. The lower 

the correlation between pixels, the clearer the in-

focus image edge.  

4. Gradient-based method. The sharper the image edge, 

the larger the gradient. 
Results of the focus-measure methods are shown in Fig.4, 

where z = 0 μm is the ground truth value of the in-focus 

micropipette image. However, the four focus-measure 

methods all reached their peak focus-measure scores at -60 

μm and -90 μm, resulting in an average absolute error of 75 

μm. Obviously, the position of the corresponding 

micropipette tip is not in the in-focus position (see black 

dots in Fig. 4). The recognition error of the traditional 

algorithm is between 50% and 75%.  

The large error of focus-measure methods is mainly 

because adjusting the depth of the micropipette upward does 
not lead to the defocusing of the whole image, but to the 

movement of the focus point. These focus-measure methods 

can only determine whether the image is in-focus by the 

change of the pixel gradient. Since the in-focus interval of 

the end-effector will move from its tip to the body part when 

moving upward and does not disappear, the focus area 

becomes larger instead. Therefore, the pixel gradient still 

exists, so the focus-measure methods cannot accurately 

judge the focus situation of the tip, and will produce a large 

misidentification due to the shift of the in-focus area. In 

contrast, using ResNet-34 can fully learn the features of each 

out-of-focus depth interval, and it can be seen from Fig.5 
that the algorithm's classification accuracy for each class is 

above 90%. This can be attributed to the fact that the model 

learns not only the gradient change, but also the geometry of 

the end-effector, thus increasing its ability for distinguishing 

different in-focus parts within the end-effector. 
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TABLE 2. COMPARISON BETWEEN RESNET-34 AND RESNET-34+WLOSS PERFORMANCE INDICATORS. 

Model -120μm -90μm -60μm -30μm 0μm +30μm +60μm +90μm +120μm 

ResNet-34 Precision 0.977 0.807 0.852 0.841 0.818 0.795 0.693 0.568 0.864 

Recall 0.956 0.826 0.721 0.851 0.923 0.824 0.735 0.633 0.760 

F1-score 0.966 0.816 0.781 0.846 0.867 0.809 0.713 0.599 0.809 

ResNet-

34+WLoss 

Precision 0.968 0.937 0.989 0.979 0.979 1.000 0.979 0.916 0.916 

Recall 0.968 0.957 0.959 0.989 0.979 0.990 0.939 0.906 0.978 

F1-score 0.968 0.947 0.974 0.984 0.979 0.995 0.959 0.911 0.946 

 


